SISTEM PENGAMBILAN KEPUTUSAN OTOMATIS BERBASIS FUZZY UNTUK KELAYAKAN REUSE AIR DRAIN MESIN RETORT

Authors

  • Mohamad Muchtarul Hadist Universitas Muhammadiyah Sidoarjo
  • Indah Sulistiyowati Universitas Muhammadiyah Sidoarjo
  • Syamsudduha Syahrorini Universitas Muhammadiyah Sidoarjo
  • Agus Hayatal Falah Universitas Muhammadiyah Sidoarjo

DOI:

https://doi.org/10.47662/alulum.v14i1.1171

Keywords:

Mamdani fuzzy logic, water quality, automated decision-making, retort water reuse

Abstract

High water consumption in retort sterilization processes and the disposal of drain water with reuse potential highlight the need for an objective and automated water reuse feasibility assessment system. This study aims to develop an automated decision-making system based on Mamdani fuzzy logic to evaluate the reuse feasibility of retort drain water using turbidity, pH, and Total Dissolved Solids (TDS) parameters. The scope of this research includes the design of a multi-parameter monitoring prototype, the implementation of a food-grade-based fuzzy inference system, and the integration of decision results with automated valve control. The study adopts a research and development approach, in which sensor data are processed in real-time using a Mamdani fuzzy inference system consisting of 27 rule bases with a turbidity-based rule override mechanism. Experimental results indicate that all sensors achieve accuracy below 1%, repeatability under 0.3%, and good linearity within their operational ranges. Fuzzy logic evaluation demonstrates a decision accuracy of 100% compared to manual calculations. Testing on 30 retort drain water samples shows that 26.67% are classified as reuse, 66.67% as treatment, and 6.67% as reject, resulting in a water-saving potential of 93.33%. The proposed system effectively improves water-use efficiency, reduces operational costs, and supports sustainable practices in the food processing industry.

References

Abuzairi, T., Irfan, A., & Basari. (2021). COVENT-Tester: A low-cost, open source ventilator tester. HardwareX, 9, e00196. https://doi.org/10.1016/j.ohx.2021.e00196

Adjovu, G., Stephen, H., James, D., & Ahmad, S. (2023). Measurement of total dissolved solids and total suspended solids in water systems. Remote Sensing, 15(14), 1–43.

Al-Mutairi, A. W., & Al-Aubidy, K. M. (2023). IoT-based smart monitoring and management system for fish farming. Bulletin of Electrical Engineering and Informatics, 12(3), 1435–1446. https://doi.org/10.11591/eei.v12i3.3365

Barzegar, Y., Gorelova, I., Bellini, F., & D’Ascenzo, F. (2023). Drinking Water Quality Assessment Using a Fuzzy Inference System Method: A Case Study of Rome (Italy). International Journal of Environmental Research and Public Health, 20(15). https://doi.org/10.3390/ijerph20156522

Bellini, F., Barzegar, Y., Barzegar, A., Marrone, S., Verde, L., & Pisani, P. (2025). Sustainable Water Quality Evaluation Based on Cohesive Mamdani and Sugeno Fuzzy Inference System in Tivoli (Italy). Sustainability (Switzerland), 17(2). https://doi.org/10.3390/su17020579

Benjakul, S., Chantakun, K., & Karnjanapratum, S. (2018). Impact of retort process on characteristics and bioactivities of herbal soup based on hydrolyzed collagen from seabass skin. Journal of Food Science and Technology, 55(9), 3779–3791. https://doi.org/10.1007/s13197-018-3310-z

Efendi, M. T. N., Sulistiyowati, I., Syahrorini, S., & Anshory, I. (2024). Designing a Monitoring System and Optimizing Water Quality in Tilapia Farming Ponds in Pohkecik Hamlet Using Ubidots. Buletin Ilmiah Sarjana Teknik Elektro, 6(1), 34–44. https://doi.org/10.12928/biste.v6i1.10090

Fernandez Alvarez, V., Granada Salazar, D., Figueroa, C., Corrales, J. C., & Casanova, J. F. (2023). Estimation of Water Turbidity in Drinking Water Treatment Plants Using Machine Learning Based on Water and Meteorological Data. 89. https://doi.org/10.3390/ecws-7-14326

Garnier, C., Guiga, W., Lameloise, M.-L., & Fargues, C. (2023). Water reuse in the food processing industries: A review on pressure-driven membrane processes as reconditioning treatments. Journal of Food Engineering, 344, 111397. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2022.111397

Golshan, M., Dastoorpour, M., & Birgani, Y. T. (2020). Fuzzy environmental monitoring for the quality assessment: Detailed feasibility study for the Karun River basin, Iran. Groundwater for Sustainable Development, 10, 100324. https://doi.org/https://doi.org/10.1016/j.gsd.2019.100324

Irawan, Y., Febriani, A., Wahyuni, R., & Devis, Y. (2021). Water quality measurement and filtering tools using Arduino Uno, PH sensor and TDS meter sensor. Journal of Robotics and Control (JRC), 2(5), 357–362. https://doi.org/10.18196/jrc.25107

Jimenez, P. S., Bangar, S. P., Suffern, M., & Whiteside, W. S. (2024). Understanding retort processing: A review. Food Science and Nutrition, 12(3), 1545–1563. https://doi.org/10.1002/fsn3.3912

Kirby, R. M., Bartram, J., & Carr, R. (2003). Water in food production and processing: quantity and quality concerns. Food Control, 14(5), 283–299. https://doi.org/https://doi.org/10.1016/S0956-7135(02)00090-7

Moumni, M., & Massour el Aoud, M. (2022). Fuzzy logic control of a brackish water reverse osmosis desalination process. Computers & Chemical Engineering, 167, 108026. https://doi.org/https://doi.org/10.1016/j.compchemeng.2022.108026

Papa, P., Zampetti, E., Molinari, F. N., De Cesare, F., Di Natale, C., Tranfo, G., & Macagnano, A. (2024). A Polyvinylpyrrolidone Nanofibrous Sensor Doubly Decorated with Mesoporous Graphene to Selectively Detect Acetic Acid Vapors. Sensors, 24(7). https://doi.org/10.3390/s24072174

Plappally, A. K., & Lienhard V, J. H. (2013). Costs for water supply, treatment, end-use and reclamation. Desalination and Water Treatment, 51(1–3), 200–232. https://doi.org/10.1080/19443994.2012.708996

Pratama, I. P. Y. pramesia, Wibawa, K. S., & Suarjaya, I. M. A. D. (2022). Perancangan PH Meter Dengan Sensor PH Air Berbasis Arduino. JITTER?: Jurnal Ilmiah Teknologi Dan Komputer, 3(2), 1034. https://doi.org/10.24843/jtrti.2022.v03.i02.p02

R. L. Bailone, R. C. Borra, H. C. S. Fukushima, dan L. K. A. (2022). Water reuse in the food industry. Discov Food, 2(1). https://doi.org/10.1007/s44187-021-00002-4.

Rosmasari, Nur Rahmad, D., Prafanto, A., Khoirunnita, A., & Jamil, M. (2025). Sugeno Fuzzy Logic for IoT-based Chicken Farm Drinking Water Quality Monitoring. Indonesian Journal of Data and Science, 6(1), 134–144. https://doi.org/10.56705/ijodas.v6i1.229

Utari, P., Aisuwarya, R., & Rahayu, R. (2023). Journal on Computer Hardware , Signal Processing , Embedded System and Networking MIKROKONTROLER. 04(02), 141–155.

Vadiati, M., Asghari-Moghaddam, A., Nakhaei, M., Adamowski, J., & Akbarzadeh, A. H. (2016). A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices. Journal of Environmental Management, 184(Pt 2), 255–270. https://doi.org/10.1016/j.jenvman.2016.09.082

WHO/UNICEF. (2017). WATER QUALITY AND HEALTH - REVIEW OF TURBIDITY: Information for regulators and water suppliers. Who/Fwc/Wsh/17.01, 10.

WHO. (2007). pH in drinking-water. Guidelines for Drinking Water Quality, 2(2), 1–7.

?ywiec, J., Tchórzewska-Cie?lak, B., & Sokolan, K. (2024). Assessment of Human Errors in the Operation of the Water Treatment Plant. Water (Switzerland), 16(17), 1–16. https://doi.org/10.3390/w16172399

Downloads

Published

2026-01-30