TERMOGRAVIMETRI ANALISIS ULTIMAT DAN PROKSIMAT BIOMASSA SERTA PENENTUAN NILAI KALOR

Authors

  • Rifqi Sufra Institut Teknologi Sumatera
  • Herri Susanto Institiut Teknologi Sumatera
  • Jenny Rizkiana Institut Teknologi Bandung
  • Suharto Suharto Badan Riset Inovasi Nasional
  • Arysca Wisnu Satria Institiut Teknologi Sumatera

DOI:

https://doi.org/10.47662/alulum.v14i1.1170

Keywords:

Arang, Karbon, Kayu, Termogravimetri, Nilai kalor

Abstract

Biomass characterisation is important for knowing the contained components in biomass. Some types of biomass studied were wood of acacia (Acacia mangium), gamal (Gliricidia sepium), coconut shell (Cocos nucifera) charcoal, and wood charcoal, for the gasification process through proximate analysis, ultimate analysis, and determination of high heating value (HHV). Ultimate analysis data utilised thermogravimetric analysis (TGA) for efficiency. The characterisation results show that coconut shell charcoal and wood charcoal have the highest fixed carbon content (72.66% and 68.98%) and higher C element (57.87% and 54.94%) as well as lower ash content compared to acacia wood and gamal wood, resulting in the highest calorific value (30.01 and 22.05 mJ/kg) and potentially better gasification performance. Conversely, acacia wood and gamal wood show relatively higher volatile matter content (64.03% and 76.38%) and ash (18.88%), resulting in lower calorific values. Overall, the research results indicate that coconut shell charcoal and wood charcoal are more recommended as the primary fuel in the gasification system.

References

Alam, M. T., Dai, B., Wu, X., Hoadley, A., & Zhang, L. (2021). A critical review of ash slagging mechanisms and viscosity measurement for low-rank coal and bio-slags. Front. Energy, 15(1), 46–67.

Alwan, H. (2019). Model gasifikasi biomassa menggunakan pendekatan kesetimbangan termodinamika stoikiometris dalam memprediksi gas produser. Jurnal Integrasi Proses, 8(1), 31. https://doi.org/10.36055/jip.v8i1.5597

Ardila, Y. C., Figueroa, J. E. J., & Maciel, M. R. W. (2024). Mathematical models for predicting the higher heating value and ultimate analysis of biomass. Industrial Crops and Products, 208 (October 2022), 117777. https://doi.org/10.1016/j.indcrop.2023.117777

Camaraza-medina, Y. (2025). Proximate and ultimate analysis , higher heating value and inorganic chemical composition of woods from central region of Cuba. Sustainable Chemistry One World, 8(9), 100147. https://doi.org/10.1016/j.scowo.2025.100147

Febriani, A. V., Hanum, F. F., Rahayu, A., & Setya, B. (2025). The impact of carbonization temperature on the quality of empty fruit bunch charcoal and palm kernel charcoal for co-firing application. Sains Natural, 15, 28–39.

Hasibuan, R., & Pardede, H. M. (2023). Pengaruh suhu dan waktu pirolisis terhadap karakteristik arang dari tempurung kelapa effect of pyrolysis temperature and time on characteristics of coconut shell charcoal. Jurnal Teknik Kimia USU, 12(1), 46–53.

Longui, E. L., Lima, I. L. de, Ranzini, M., Barbosa, J. de A., Yamaji, F. M., Junior, H. de J. E., Júnior, F. G. da S., & Assumpção, P. A. de. (2024). Wood chemical characterization of Acacia mangium and Calophyllum brasiliense grown in plantation. Research, Society and Development, 2024, 1–13.

Narega, S. O., Ysf, R. A., Aswan, A., Fatria, F., Erlinawati, E., & Hilwatullisan, H. (2022). Produksi syngas dari proses gasifikasi biomassa menggunakan downdraft gasifier sebagai gas bakar pada motor bakar empat tak. Jurnal Pendidikan Dan Teknologi Indonesia (JPTI), 2(11), 469–474.

Nhuchhen, D. R., & Afzal, M. T. (2017). HHV predicting correlations for torrefied biomass using proximate and ultimate analyses. Bioegineering MDPI https://doi.org/10.3390/bioengineering4010007

Park, S., Jun, S., Cheol, K., Cho, L., Jeon, Y., Lee, C., & Kim, D. (2022). Thermogravimetric analysis-based proximate analysis of agro-byproducts and prediction of calorific value. Energy Reports, 8, 12038–12044. https://doi.org/10.1016/j.egyr.2022.09.040

Puri, L., Hu, Y., & Naterer, G. (2024). Critical review of the role of ash content and composition in biomass pyrolysis. Frontiers in Fuel, March, 1–19. https://doi.org/10.3389/ffuel.2024.1378361

Rampe, M. J., Santoso, I. R. S., Rampe, H. L., Tiwow, V. A., & Rorano, T. E. A. (2021). Study of pore length and chemical composition of charcoal that results from the pyrolysis of coconut shell in bolaang mongondow, Sulawesi, Indonesia study of pore length and chemical composition of charcoal that results from the pyrolysis of coconut shell. Karbala International Journal of Modern Science, 8(1).

Rusydi, S. M. 2019. Pyrotechnology 4 in 1?: Prinsip Dasar Teknologi Pirolisa Biomassa Edisi 1. Aceh: Unimal Press.

Schmidt-rohr, K. (2015). Why combustions are always exothermic, yielding about 418 kj per mole of O2. Journal of Chemical Education. https://doi.org/10.1021/acs.jchemed.5b00333

Sodikin, I., & Umar, D. F. (2013). Study on Ashes of Blended Coal-Biomass for Co-Firing System in A Coal Fired Boiler. Indonesian Mining Journal, September 2012, 37–48.

Supriyanto, S., & Ismanto, I. (2020). Analisa pengaruh holding time pada proses karburasi dalam media arang kayu jati terhadap kekerasan baja st-37. Jurnal Mesin Nusantara, 3(1), 29–36.

Tao, J., Pan, L., Yao, J., Liu, L., & Chen, Q. (2023). Reliability analysis of hhv prediction models for organic materials using bond dissociation energies. Polymer MDPI.

Xing, J., Luo, K., Wang, H., Gao, Z., & Fan, J. (2019). A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches. Energy, 188, 116077. https://doi.org/10.1016/j.energy.2019.116077

Downloads

Published

2026-01-30